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1 Part I

Definition 1.1. Let L be a representation of Sn. Define the Frobenius character map ch : Rep Sn → Λn

(where Λn =symmetric polynomials of degree n) to be

ch(L) =
1

n!

∑
σ∈Sn

TrL(σ)p
k1(σ)
1 . . . pkr(σ)r

where pi are power sums, ki(σ) is the number of cycles of length i in σ.

Remark. ch(Sλ) = sλ. Note [Sλ]λ⊢n forms a basis for K0(Rep Sn) and in fact

ch : K0

⊕
n≥0

Rep Sn

 ∼−→ Λ(= symmetric polynomials in ∞ many variables)

is an isomorphism of Hopf Algebras. (Representations of the Symmetric Group is a categorification of

symmetric functions.)

Lemma 1.2. The reflection(geometric) representation h of Sn is isomorphic to Cn/C · x1 + . . . + xn
where Cn is the defining representation of Sn.

Lemma 1.3. Let T : V → V be a linear operator and let V = V1⊕ . . . Vk where each Vi is T−invariant.

Then

charT (q) = charT |Vi
(q) . . . charT |Vn (q)

Proof. qI − T will be a block matrix. ■

Proposition 1.4. For σ ∈ Sn acting in the reflecting representation h

deth(I − qσ) =
1

1− q

∏
i

(1− qi)ki(σ) (1)

Proof. It is easy to see that for A : V → V where V is n dimensional,

det(I − qA) = (−q)ncharA(q
−1) (2)

From Lemma 1.2 we have that Cn = C⊕ h as representations and so by Lemma 1.3

deth(I − qσ) =
detCn(I − qσ)

dettriv(I − qσ)
=

detCn(I − qσ)

1− q

As the characteristic polynomial is conjugation invariant in GL(Cn), and conjugating by permutation

matrices corresponds to conjugation in Sn so we see that the LHS above only depends on the cycle type

of σ. For each cycle c in σ of length i, notice there is a σ invariant subspace Vc of Cn of dimension i.

1 of 8



Section 1 Cailan Li Part I

For example, if σ = (1234)(56), then V(1234) = ⊕4
i=1Cx1 and V(56) = Cx5 ⊕Cx6 are our two σ invariant

subspaces. It is clear these only depend on the length i and that if σ = c1 . . . cm where ci are cycles,

Cn = Vc1 ⊕ . . .⊕ Vcm

Therefore by Lemma 1.3 we see that

detCn(I − qσ) =
∏
i

detCi(I − q(12 · · · i))ki(σ)

where Ti = (12 · · · i) acts on Ci by permutation of basis vectors. It’s clear that Ci is a T−cyclic vector

space, i.e.
{
T j(x1)

}
j≥0

= Ci. As a result,

charTi(q) = (−1)iminTi(q)

and so degminTi(q) = i. Because T i
i − I = 0 it follows that minTi(q) = qi − 1. Thus

detCi(I − q(12 · · · i)) = (−q)icharTi(q) = qi
(
1

qi
− 1

)
= 1− qi

■

Recall Lm/n =
⊕
i

(Lm/n)i where each (Lm/n)i is a representation of Sn.

Proposition 1

Let Fm/n(q, pi) := gch(Lm/n) :=
∑
i

ch((Lm/n)i)q
i. Fixing m, we claim

Fm(q, pi) :=
∞∑
n=0

Fm/n(q, pi)z
n =

1

[m]q

m−1∏
j=0

∞∏
k=1

1

1− qj+
1−m

2 zxk

where [m]q =
qm/2 − q−m/2

q1/2 − q−1/2
.

Proof. Let δm,n =
(m− 1)(n− 1)

2
. Using what Sam wrote,

∑
i

Tr(σ, (Lm/n)i)q
i = q−δm,n

deth(1− qmσ)

deth(1− qσ)

Eq. (1)
== q−δm,n

1− q

1− qm

∏
i

(
1− qmi

1− qi

)ki(σ)

Thus

Fm/n(q, pi) =
∑
i

1

n!

∑
σ∈Sn

Tr(σ, (Lm/n)i)p
k1(σ)
1 . . . pkr(σ)r qi

=
1

n!

∑
σ∈Sn

q
n(1−m)

2

[m]q

∏
i

(
1− qmi

1− qi
pi

)ki(σ)
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Section 2 Cailan Li Part II

as q−δm,n
1− q

1− qm
=

q
n(1−m)

2

[m]q
. Thus,

Fm(q, pi) =

∞∑
n=0

1

n!

∑
σ∈Sn

q
n(1−m)

2

[m]q

∏
i

(
1− qmi

1− qi
pi

)ki(σ)

zn (3)

=
∞∑
n=0

1

n!

∑
λ⊢n

n!∏
i i

ki(λ)ki(λ)!

q
n(1−m)

2

[m]q

∏
i

(
1− qmi

1− qi
pi

)ki(λ)

zn (4)

=
1

[m]q

∞∑
n=0

∑
λ⊢n

∏
i

1

ki(λ)!

(
(1− qmi)piq

i(1−m)
2 zi

(1− qi)i

)ki(λ)

(5)

where going from (3)− (4), the cycle type of an element σ ∈ Sn is the same as a partition λ of n. The

number of permutations in Sn with cycle type λ is precisely the size of the conjugacy class in Sn so we

can then reindex over partitions of n. Going from (4)− (5) we use
∑
i

iki(λ) = n. Now note

∏
i

1

1− zi
=

∞∑
n=0

(∑
λ⊢n

1

)
zn =

∞∑
n=0

∑
λ⊢n

∏
i

(zi)ki(λ)

=⇒
∏
i

1

1− f(q, i)zi
=

∞∑
n=0

∑
λ⊢n

∏
i

(f(q, i)zi)ki(λ)

Moving over to exponential generating functions it follows that∏
i

exp
(
f(q, i)zi

)
=

∞∑
n=0

∑
λ⊢n

∏
i

1

ki(λ)!
(f(q, i)zi)ki(λ)

and thus

Fm(q, pi) =
1

[m]q
exp

( ∞∑
i=1

(1− qmi)piq
i(1−m)

2 zi

(1− qi)i

)
(6)

=
1

[m]q

m−1∏
j=0

exp

( ∞∑
i=1

qijpiq
i(1−m)

2 zi

i

)
(7)

=
1

[m]q

m−1∏
j=0

exp

( ∞∑
i=1

(qj+
(1−m)

2 z)i

i
pi

)
(8)

=
1

[m]q

m−1∏
j=0

∞∏
k=1

exp

(
log

(
1

1− qj+
(1−m)

2 zxk

))
(9)

■

2 Part II

� Rewrite Proposition 1.

� ch(L) is really the same datum as {χL(g)}g∈Sn
. For example, the cycle type for the identity

permutation is (1n), so ⟨pn1 ⟩ chL =
dimL

n!
=⇒ dimL = n! ⟨chL, pn1 ⟩.
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Section 3 Cailan Li Part II

The advantage of using ch(L) is that it’s a generating function/formal. Notice characters for Sn

is a function while characters for GL(m) = is a generating function.

K0

⊕
n≥0

Rep Sn

 K0

(
Reppoly GL(m)

)

Sym
ch

∼=
Tr(diag(x1,...,xm),−)

∼ for m>>0

Theorem 2

As a graded Sn−rep, the representation Lm/n decomposes as

Lm/n =
1

[m]q

⊕
λ⊢n

sλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 )Sλ (10)

Proof. Since ch is an isomorphism it suffices to show this at the level of graded Frobenius characters.

Now, using the Cauchy identity∏
k,j

1

1− xkyj
=
∑
λ

sλ(x1, . . .)sλ(y1, . . .)

with

yj =

{
zqj+

1−m
2 0 ≤ j < m

0 j ≥ m

we see that

gch(Lm/n) = ⟨zn⟩Fm(q, pi)
Proposition 1

=== ⟨zn⟩ 1

[m]q

m−1∏
j=0

∞∏
k=1

1

1− qj+
1−m

2 zxk

Cauchy
=== ⟨zn⟩ 1

[m]q

∑
λ

sλ(x1, . . .)sλ(zq
1−m

2 , zq
3−m

2 , . . . , zq
m−1

2 )

= ⟨zn⟩ 1

[m]q

∑
n

∑
λ⊢n

znsλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 )sλ(x1, . . .)

=
1

[m]q

∑
λ⊢n

sλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 )sλ(x1, . . .)

■

Proposition 2.1 (Hook-Content Formula).

sλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 ) =
∏

(i,j)∈λ

[m+ i− j]q
[hλ(i, j)]q

where [m]q =
qm/2 − q−m/2

q1/2 − q−1/2
and hλ(i, j) =hook length of box (i, j).

Example.

L3/2 = (q + q−1)S
⊕

S
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Section 3.1 Cailan Li HOMFLY polynomial of Torus knots

3 HOMFLY polynomial of Torus knots

Definition 3.1. Recall that the HOMFLY polynomial P = Pq−q−1(a, q) of a link L is defined to be

aP (L+)− a−1P (L−) = (q − q−1)P (L0)

and P (unknot) = 1.

Example. For the trefoil (T (2, 3)) one can compute

P (T (2, 3)) = a2(q2 + q−2 − a2)

Definition 3.2. Hq(n) is the quotient of Z[q±1][Bn] by the relation

σ2
i = (q − 1)σi + q

where {σi}1≤i≤n−1 be the usual set of generators for Bn. Let gi := [σi] ∈ Hq(n).

Warning. q is always generic!

Definition 3.3. The Jones-Ocneanu trace tr :
⋃
n≥1

Hq(n) → Z[q±1][z] is the unique linear map s.t.

(1) tr(ab) = tr(ba).

(2) tr(1) = 1.

(3) tr(xgn) = ztr(x) for x ∈ Hq(n)

Remark (Skip). Property (1) above implies that tr factors through⋃
n≥1

Hq(n) →
⋃
n≥1

Hq(n)/[Hq(n), Hq(n)] = Sym

and some people also refer to the above map as the Jones-Oceanu trace, where you recover tr by

specializing pi to specific values.

Theorem 3.4 (Jones). Let β ∈ Bn. Define

Xβ(q, λ) = f(q, λ)tr([β])|z=− 1−q
1−λq

(11)

Then P (β̂)(a, q) = Xβ

(
q2,

a2

q

)
.

Theorem 3.5 (Ocneanu). Let x ∈ Hq(n)

tr(x) =
∑
λ⊢n

TrSλ(q)(x)
∏

(i,j)∈λ

qi(1− q + z)− qjz

1− qhλ(i,j)
(12)

where the first row of λ has coordinates (0, j) and the first column has coordinates (i, 0).

Proof. Hq(n) =
⊕
λ⊢n

End(Sλ(q)) is semisimple as q is generic. Any function f : Mk(C) → C satisfying

f(ab) = f(ba) is a scalar multiple of Tr. Ocneanu found these constants for us. ■
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Section 3.1 Cailan Li Calculation of P (T (m,n))

3.1 Calculation of P (T (m,n))

Definition 3.6. T (m,n) is the closure of the braid (σ1 . . . σn−1)
m.

Remark. T (m,n) is a knot ⇐⇒ (m,n) = 1 and T (m,n) = T (n,m).

Let πλ : Hq(n) → End(Sλ).

Lemma 3.7. Fix λ ⊢ n and define ei :=
1 + πλ(gi)

1 + q
. Then e2i = ei. Moreover let dimSλ(q) = d and

rank Sλ(q)ei = r1. Then

πλ((g1 . . . gn−1)
n) = qrn(n−1)/didSλ

Proof. e2i = ei is simple computation in Hq(n).

Lemma 3.8. FTn := (σ1 . . . σn−1)
n is central in Bn.

Because Sλ is irreducible it follows that

πλ((g1 . . . gn−1)
n) = c · idSλ c ∈ C

By definition, πλ(gi) = qei − (1− ei). Because ei is an idempotent it is diagonalizable with eigenvalues

1 and 0 and therefore in some basis of Sλ we have

πλ(gi) = qei − (1− ei) =



size r︷ ︸︸ ︷
q

. . .

q

−1
. . .

−1


Thus

det(πλ(gi)) = ±qr =⇒ det(πλ((g1 . . . gn−1)
n)) = qrn(n−1) =⇒ cd = qrn(n−1) =⇒ c = w(q)qrn(n−1)/d

where w : C → ζd where ζd is a d−th root of unity. w is continuous, C connected, and ζd is discrete and

so w is constant. Note g1 . . . gn−1|q=1 = (1 n (n − 1) . . . 2). (n (n − 1) . . . 1)n = id and so 1 = c|q=1 =

w(1). ■

Lemma 3.9. The matrix Aλ(q) = q−r(n−1)/dπλ(g1 . . . gn−1) is conjugate to the matrix for the action of

(n (n− 1) . . . 1) on Sλ.

Proof. The previous lemma shows that Aλ(q)
n − I = 0. Therefore the minimal polynomial of Aλ has

distinct roots and so Aλ is diagonalizable and so the conjugacy class is just determined by the eigenvalues

and multiplicities of the eigenvalues. The same continuity and connectedness argument will show that

these are constant and thus Aλ(q) is conjugate to Aλ(1) = (n (n− 1) . . . 1). ■

Corollary 3.10. Suppose (m,n) = 1.

Tr(πλ((g1 . . . gn−1)
m)) =

{
(−1)aqmr(n−1)/d if λ = Ha,b

0 otherwise
(13)

where Ha,b is the hook shape. [Draw hook with a+ 1 vertical boxes and b+ 1 horizontal boxes].
1Aprioi r depends on i but we will show it’s independent later.
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Section 4 Cailan Li Cherednik Algebras and Torus Knots

Proof. By the previous lemma we see that

Tr(πλ((g1 . . . gn−1)
m)) = qmr(n−1)/dTrSλ((n (n− 1) . . . 1)m) = qmr(n−1)/d

∑
i

λm
i

where λi are the eigenvalues of (n (n− 1) . . . 1). As seen in previous lemma, all the λi are n−th roots of

unity. As (m,n) = 1 the map τm(wn) = wm
n where wn a primitive n−th root of unity is in Gal(Q(wn)/Q)

and note λm
i = τm(λi). As char((n (n − 1) . . . 1)) ∈ Q[x] it follows that τm(char(n (n−1)...1)(x)) =

char(n (n−1)...1)(x) and thus

∑
i

λm
i =

∑
i

τm(λi) = τm

(∑
i

λi

)
=
∑
i

λi = TrSλ((n (n− 1) . . . 1))

The result now follows from the Murnaghan-Nakayama rule. ■

Theorem 3 (Jones)

Suppose (m,n) = 1. Then

P (Tn,m)(a, q) =
am(n−1) ⟨1⟩q

⟨n⟩q

n−1∑
b=0

(−1)n−1−b q−m(2b−n+1)

⟨b⟩q! ⟨n− 1− b⟩q!
∏

j=b−n+1
j ̸=0

(
qja− q−ja−1

)
(14)

where ⟨n⟩ = qn − q−n.

Proof. Plug Eq. (13) into Eq. (12) and then plug that into Eq. (11). The only thing I haven’t explicitly

computed is r = rank Sλ(q)(ei) and d = dimSλ. First all the σi are conjugate to σ1 in Bn as a result of

the braid relations. So we only need to find rank e1. But e1 ∈ Hq(2). Thus

rank Sλ(q)(e1) = rank
Res

Hq(n)

Hq(2)
(Sλ(q))

(e1)

There are 2 irreducibles for Hq(2) and π (g1) = q while π (g1) = −1 =⇒ π (e1) = 1 and

π (g1) = 0 and so for λ = Ha,b

r = rank
S
Ha,b (q)

(e1) = mult of S (q) in Res
Hq(n)
Hq(2)

(SHa,b(q))
branching
===

(
a+ b− 1

a

)
and note we also have

d = dimSHa,b(q)
hook
===

(
a+ b

a

)
■

4 Cherednik Algebras and Torus Knots

Proposition 4.1 (Skip). Let L be any representation of Sn, then

1

1− a
ch(L; pi = 1− ai) =

n−1∑
k=0

(−a)k dimCHomSn(Λ
kh, L) (15)
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Proof. Applying definitions,

n−1∑
k=0

(−a)k dimCHomSn(Λ
kh, L) =

n−1∑
k=0

(−a)k
〈
Λkh, L

〉
=

1

n!

∑
σ∈Sn

n−1∑
k=0

(−a)kTrL(σ)TrΛkh(σ)

=
1

n!

∑
σ∈Sn

TrL(σ)

n−1∑
k=0

TrΛkh(σ)(−a)k

Writing out the first few terms, we see that

n−1∑
k=0

TrΛkh(σ)(−a)k = 1 + Trh(σ)(−a) + . . .+TrΛn−1h(σ)(−a)n−1

= (−1)n−1 (characteristic polynomial of σ but coefficients reversed)

= (−1)nqncharσ

(
1

q

)
Eq. (2)
== det(I − qσ)

Eq. (1)
==

1

1− a

∏
i

(1− ai)ki(σ)

Now apply the definition of ch(L). ■

Theorem 4 (GORS)

The graded Frobenius character of Lm/n (after changing variables) coincides with the HOMFLY

polynomial of the (m,n)−torus knot when (m,n) = 1.

a(m−1)(n−1) 1

1− a2
gch(Lm/n)(q

2, pi = (1− a2)i) = P (Tn,m)(a, q)

Proof.

1

1− a2
gch(Lm/n)(q

2, pi = (1− a2)i)
Eq. (15)
==

∑
i

n−1∑
k=0

(−a2)k dimCHomSn(Λ
kh, (Lm/n)i)q

2i

check
==

∑
i

n−1∑
k=0

(−a2)k dimCHomSn(S
a,n−1−a, (Lm/n)i)q

2i

Eq. (10)
== explicit function of q and a

One can then show using pro q−series manipulation to show that this is equal to Eq. (14). ■

Corollary 4.2 (rank-level duality).

(Lm/n)
Sn ∼= (Ln/m)Sm

Fun Facts:

(a) gr Ln+1/n
∼= C[x1, . . . , xn, y1, . . . , yn]/C[x1, . . . , xn, y1, . . . , yn]Sn

+

(b) cn(q, t) = ⟨∇en, en⟩ = PT (n,n+1)(q, t, a = 0)
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