Torus Knots and the Rational DAHA

Cailan Li

November 9th, 2021

1 Part I

Definition 1.1. Let L be a representation of S_{n}. Define the Frobenius character map ch : Rep $S_{n} \rightarrow \Lambda_{n}$ (where $\Lambda_{n}=$ symmetric polynomials of degree n) to be

$$
\operatorname{ch}(L)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{Tr}_{L}(\sigma) p_{1}^{k_{1}(\sigma)} \ldots p_{r}^{k_{r}(\sigma)}
$$

where p_{i} are power sums, $k_{i}(\sigma)$ is the number of cycles of length i in σ.
Remark. $\operatorname{ch}\left(S^{\lambda}\right)=s_{\lambda}$. Note $\left[S^{\lambda}\right]_{\lambda \vdash n}$ forms a basis for $K_{0}\left(\operatorname{Rep} S_{n}\right)$ and in fact

$$
\text { ch }: K_{0}\left(\bigoplus_{n \geq 0} \operatorname{Rep} S_{n}\right) \xrightarrow{\sim} \Lambda(=\text { symmetric polynomials in } \infty \text { many variables })
$$

is an isomorphism of Hopf Algebras. (Representations of the Symmetric Group is a categorification of symmetric functions.)

Lemma 1.2. The reflection(geometric) representation \mathfrak{h} of S_{n} is isomorphic to $\mathbb{C}^{n} / \mathbb{C} \cdot x_{1}+\ldots+x_{n}$ where \mathbb{C}^{n} is the defining representation of S_{n}.

Lemma 1.3. Let $T: V \rightarrow V$ be a linear operator and let $V=V_{1} \oplus \ldots V_{k}$ where each V_{i} is T-invariant. Then

$$
\operatorname{char}_{T}(q)=\operatorname{char}_{\left.T\right|_{V_{i}}}(q) \ldots \operatorname{char}_{\left.T\right|_{V_{n}}}(q)
$$

Proof. $q I-T$ will be a block matrix.
Proposition 1.4. For $\sigma \in S_{n}$ acting in the reflecting representation \mathfrak{h}

$$
\begin{equation*}
\operatorname{det}_{\mathfrak{h}}(I-q \sigma)=\frac{1}{1-q} \prod_{i}\left(1-q^{i}\right)^{k_{i}(\sigma)} \tag{1}
\end{equation*}
$$

Proof. It is easy to see that for $A: V \rightarrow V$ where V is n dimensional,

$$
\begin{equation*}
\operatorname{det}(I-q A)=(-q)^{n} \operatorname{char}_{A}\left(q^{-1}\right) \tag{2}
\end{equation*}
$$

From Lemma 1.2 we have that $\mathbb{C}^{n}=\mathbb{C} \oplus \mathfrak{h}$ as representations and so by Lemma 1.3

$$
\operatorname{det}_{\mathfrak{h}}(I-q \sigma)=\frac{\operatorname{det}_{\mathbb{C}^{n}}(I-q \sigma)}{\operatorname{det}_{\text {triv }}(I-q \sigma)}=\frac{\operatorname{det}_{\mathbb{C}^{n}}(I-q \sigma)}{1-q}
$$

As the characteristic polynomial is conjugation invariant in $\mathrm{GL}\left(\mathbb{C}^{n}\right)$, and conjugating by permutation matrices corresponds to conjugation in S_{n} so we see that the LHS above only depends on the cycle type of σ. For each cycle c in σ of length i, notice there is a σ invariant subspace V_{c} of \mathbb{C}^{n} of dimension i.

For example, if $\sigma=(1234)(56)$, then $V_{(1234)}=\oplus_{i=1}^{4} \mathbb{C} x_{1}$ and $V_{(56)}=\mathbb{C} x_{5} \oplus \mathbb{C} x_{6}$ are our two σ invariant subspaces. It is clear these only depend on the length i and that if $\sigma=c_{1} \ldots c_{m}$ where c_{i} are cycles,

$$
\mathbb{C}^{n}=V_{c_{1}} \oplus \ldots \oplus V_{c_{m}}
$$

Therefore by Lemma 1.3 we see that

$$
\operatorname{det}_{\mathbb{C}^{n}}(I-q \sigma)=\prod_{i} \operatorname{det}_{\mathbb{C}^{i}}(I-q(12 \cdots i))^{k_{i}(\sigma)}
$$

where $T_{i}=(12 \cdots i)$ acts on \mathbb{C}^{i} by permutation of basis vectors. It's clear that \mathbb{C}^{i} is a T-cyclic vector space, i.e. $\left\{T^{j}\left(x_{1}\right)\right\}_{j \geq 0}=\mathbb{C}^{i}$. As a result,

$$
\operatorname{char}_{T_{i}}(q)=(-1)^{i} \min _{T_{i}}(q)
$$

and so deg $\min _{T_{i}}(q)=i$. Because $T_{i}^{i}-I=0$ it follows that $\min _{T_{i}}(q)=q^{i}-1$. Thus

$$
\operatorname{det}_{\mathbb{C}^{i}}(I-q(12 \cdots i))=(-q)^{i} \operatorname{char}_{T_{i}}(q)=q^{i}\left(\frac{1}{q^{i}}-1\right)=1-q^{i}
$$

Recall $L_{m / n}=\bigoplus_{i}\left(L_{m / n}\right)_{i}$ where each $\left(L_{m / n}\right)_{i}$ is a representation of S_{n}.

Proposition 1

Let $F_{m / n}\left(q, p_{i}\right):=\operatorname{gch}\left(L_{m / n}\right):=\sum_{i} \operatorname{ch}\left(\left(L_{m / n}\right)_{i}\right) q^{i}$. Fixing m, we claim

$$
F_{m}\left(q, p_{i}\right):=\sum_{n=0}^{\infty} F_{m / n}\left(q, p_{i}\right) z^{n}=\frac{1}{[m]_{q}} \prod_{j=0}^{m-1} \prod_{k=1}^{\infty} \frac{1}{1-q^{j+\frac{1-m}{2} z x_{k}}}
$$

where $[m]_{q}=\frac{q^{m / 2}-q^{-m / 2}}{q^{1 / 2}-q^{-1 / 2}}$.
Proof. Let $\delta_{m, n}=\frac{(m-1)(n-1)}{2}$. Using what Sam wrote,

$$
\sum_{i} \operatorname{Tr}\left(\sigma,\left(L_{m / n}\right)_{i}\right) q^{i}=q^{-\delta_{m, n}} \frac{\operatorname{det}_{\mathfrak{h}}\left(1-q^{m} \sigma\right)}{\operatorname{det}_{\mathfrak{h}}(1-q \sigma)} \stackrel{E q .(1)}{=} q^{-\delta_{m, n}} \frac{1-q}{1-q^{m}} \prod_{i}\left(\frac{1-q^{m i}}{1-q^{i}}\right)^{k_{i}(\sigma)}
$$

Thus

$$
\begin{aligned}
F_{m / n}\left(q, p_{i}\right) & =\sum_{i} \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{Tr}\left(\sigma,\left(L_{m / n}\right)_{i}\right) p_{1}^{k_{1}(\sigma)} \ldots p_{r}^{k_{r}(\sigma)} q^{i} \\
& =\frac{1}{n!} \sum_{\sigma \in S_{n}} \frac{q^{\frac{n(1-m)}{2}}}{[m]_{q}} \prod_{i}\left(\frac{1-q^{m i}}{1-q^{i}} p_{i}\right)^{k_{i}(\sigma)}
\end{aligned}
$$

as $q^{-\delta_{m, n}} \frac{1-q}{1-q^{m}}=\frac{q^{\frac{n(1-m)}{2}}}{[m]_{q}}$. Thus,

$$
\begin{align*}
F_{m}\left(q, p_{i}\right) & =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\sigma \in S_{n}} \frac{q^{\frac{n(1-m)}{2}}}{[m]_{q}} \prod_{i}\left(\frac{1-q^{m i}}{1-q^{i}} p_{i}\right)^{k_{i}(\sigma)} z^{n} \tag{3}\\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\lambda \vdash n} \frac{n!}{\prod_{i} i^{k_{i}(\lambda)} k_{i}(\lambda)!} \frac{q^{\frac{n(1-m)}{2}}}{[m]_{q}} \prod_{i}\left(\frac{1-q^{m i}}{1-q^{i}} p_{i}\right)^{k_{i}(\lambda)} z^{n} \tag{4}\\
& =\frac{1}{[m]_{q}} \sum_{n=0}^{\infty} \sum_{\lambda \vdash n} \prod_{i} \frac{1}{k_{i}(\lambda)!}\left(\frac{\left(1-q^{m i}\right) p_{i} q^{\frac{i(1-m)}{2}} z^{i}}{\left(1-q^{i}\right) i}\right)^{k_{i}(\lambda)} \tag{5}
\end{align*}
$$

where going from (3) - (4), the cycle type of an element $\sigma \in S_{n}$ is the same as a partition λ of n. The number of permutations in S_{n} with cycle type λ is precisely the size of the conjugacy class in S_{n} so we can then reindex over partitions of n. Going from (4)-(5) we use $\sum_{i} i k_{i}(\lambda)=n$. Now note

$$
\begin{aligned}
& \prod_{i} \frac{1}{1-z^{i}}=\sum_{n=0}^{\infty}\left(\sum_{\lambda \vdash n} 1\right) z^{n}=\sum_{n=0}^{\infty} \sum_{\lambda \vdash n} \prod_{i}\left(z^{i}\right)^{k_{i}(\lambda)} \\
& \Longrightarrow \prod_{i} \frac{1}{1-f(q, i) z^{i}}=\sum_{n=0}^{\infty} \sum_{\lambda \vdash n} \prod_{i}\left(f(q, i) z^{i}\right)^{k_{i}(\lambda)}
\end{aligned}
$$

Moving over to exponential generating functions it follows that

$$
\prod_{i} \exp \left(f(q, i) z^{i}\right)=\sum_{n=0}^{\infty} \sum_{\lambda \vdash n} \prod_{i} \frac{1}{k_{i}(\lambda)!}\left(f(q, i) z^{i}\right)^{k_{i}(\lambda)}
$$

and thus

$$
\begin{align*}
F_{m}\left(q, p_{i}\right) & =\frac{1}{[m]_{q}} \exp \left(\sum_{i=1}^{\infty} \frac{\left(1-q^{m i}\right) p_{i} q^{\frac{i(1-m)}{2}} z^{i}}{\left(1-q^{i}\right) i}\right) \tag{6}\\
& =\frac{1}{[m]_{q}} \prod_{j=0}^{m-1} \exp \left(\sum_{i=1}^{\infty} \frac{q^{i j} p_{i} q^{\frac{i(1-m)}{2}} z^{i}}{i}\right) \tag{7}\\
& =\frac{1}{[m]_{q}} \prod_{j=0}^{m-1} \exp \left(\sum_{i=1}^{\infty} \frac{\left(q^{j+\frac{(1-m)}{2}} z\right)^{i}}{i} p_{i}\right) \tag{8}\\
& =\frac{1}{[m]_{q}} \prod_{j=0}^{m-1} \prod_{k=1}^{\infty} \exp \left(\log \left(\frac{1}{1-q^{j+\frac{(1-m)}{2}} z x_{k}}\right)\right) \tag{9}
\end{align*}
$$

2 Part II

- Rewrite Proposition 1.
- $\operatorname{ch}(L)$ is really the same datum as $\left\{\chi_{L}(g)\right\}_{g \in S_{n}}$. For example, the cycle type for the identity permutation is $\left(1^{n}\right)$, so $\left\langle p_{1}^{n}\right\rangle \operatorname{ch} L=\frac{\operatorname{dim} L}{n!} \Longrightarrow \operatorname{dim} L=n!\left\langle\operatorname{ch} L, p_{1}^{n}\right\rangle$.

The advantage of using $\operatorname{ch}(L)$ is that it's a generating function/formal. Notice characters for S_{n} is a function while characters for $\mathrm{GL}(m)=$ is a generating function.

$$
K_{0}\left(\bigoplus_{n \geq 0} \operatorname{Rep} S_{n}\right) \underbrace{\cong}_{\mathrm{ch}} \sim \sim \text { for } m \gg 0 \operatorname{Sym}_{\operatorname{Tr}\left(\operatorname{diag}\left(x_{1}, \ldots, x_{m}\right),-\right)} K_{0}\left(\operatorname{Rep}^{\text {poly }} \mathrm{GL}(m)\right)
$$

Theorem 2

As a graded $S_{n}-$ rep, the representation $L_{m / n}$ decomposes as

$$
\begin{equation*}
L_{m / n}=\frac{1}{[m]_{q}} \bigoplus_{\lambda \vdash n} s_{\lambda}\left(q^{\frac{1-m}{2}}, q^{\frac{3-m}{2}}, \ldots, q^{\frac{m-1}{2}}\right) S^{\lambda} \tag{10}
\end{equation*}
$$

Proof. Since ch is an isomorphism it suffices to show this at the level of graded Frobenius characters. Now, using the Cauchy identity

$$
\prod_{k, j} \frac{1}{1-x_{k} y_{j}}=\sum_{\lambda} s_{\lambda}\left(x_{1}, \ldots\right) s_{\lambda}\left(y_{1}, \ldots\right)
$$

with

$$
y_{j}= \begin{cases}z q^{j+\frac{1-m}{2}} & 0 \leq j<m \\ 0 & j \geq m\end{cases}
$$

we see that

$$
\begin{aligned}
\operatorname{gch}\left(L_{m / n}\right)=\left\langle z^{n}\right\rangle F_{m}\left(q, p_{i}\right) & \stackrel{\text { Proposition } 1}{\underline{2}}\left\langle z^{n}\right\rangle \frac{1}{[m]_{q}} \prod_{j=0}^{m-1} \prod_{k=1}^{\infty} \frac{1}{1-q^{j+\frac{1-m}{2}} z x_{k}} \\
& \stackrel{\text { Cauchy }}{\underline{2}}\left\langle z^{n}\right\rangle \frac{1}{[m]_{q}} \sum_{\lambda} s_{\lambda}\left(x_{1}, \ldots\right) s_{\lambda}\left(z q^{\frac{1-m}{2}}, z q^{\frac{3-m}{2}}, \ldots, z q^{\frac{m-1}{2}}\right) \\
& =\left\langle z^{n}\right\rangle \frac{1}{[m]_{q}} \sum_{n} \sum_{\lambda \vdash n} z^{n} s_{\lambda}\left(q^{\frac{1-m}{2}}, q^{\frac{3-m}{2}}, \ldots, q^{\frac{m-1}{2}}\right) s_{\lambda}\left(x_{1}, \ldots\right) \\
& =\frac{1}{[m]_{q}} \sum_{\lambda \vdash n} s_{\lambda}\left(q^{\frac{1-m}{2}}, q^{\frac{3-m}{2}}, \ldots, q^{\frac{m-1}{2}}\right) s_{\lambda}\left(x_{1}, \ldots\right)
\end{aligned}
$$

Proposition 2.1 (Hook-Content Formula).

$$
s_{\lambda}\left(q^{\frac{1-m}{2}}, q^{\frac{3-m}{2}}, \ldots, q^{\frac{m-1}{2}}\right)=\prod_{(i, j) \in \lambda} \frac{[m+i-j]_{q}}{\left[h_{\lambda}(i, j)\right]_{q}}
$$

where $[m]_{q}=\frac{q^{m / 2}-q^{-m / 2}}{q^{1 / 2}-q^{-1 / 2}}$ and $h_{\lambda}(i, j)=$ hook length of box (i, j).

Example.

$$
\begin{gathered}
L_{3 / 2}=\left(q+q^{-1}\right) S^{\square} \bigoplus S \boxminus \\
4 \text { of } 8
\end{gathered}
$$

3 HOMFLY polynomial of Torus knots

Definition 3.1. Recall that the HOMFLY polynomial $P=P_{q-q^{-1}}(a, q)$ of a link L is defined to be

$$
a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q-q^{-1}\right) P\left(L_{0}\right)
$$

and $P($ unknot $)=1$.
Example. For the trefoil $(T(2,3))$ one can compute

$$
P(T(2,3))=a^{2}\left(q^{2}+q^{-2}-a^{2}\right)
$$

Definition 3.2. $H_{q}(n)$ is the quotient of $\mathbb{Z}\left[q^{ \pm 1}\right]\left[B_{n}\right]$ by the relation

$$
\sigma_{i}^{2}=(q-1) \sigma_{i}+q
$$

where $\left\{\sigma_{i}\right\}_{1 \leq i \leq n-1}$ be the usual set of generators for B_{n}. Let $g_{i}:=\left[\sigma_{i}\right] \in H_{q}(n)$.
Warning. q is always generic!
Definition 3.3. The Jones-Ocneanu trace $\operatorname{tr}: \bigcup_{n \geq 1} H_{q}(n) \rightarrow \mathbb{Z}\left[q^{ \pm 1}\right][z]$ is the unique linear map s.t.
(1) $\operatorname{tr}(a b)=\operatorname{tr}(b a)$.
(2) $\operatorname{tr}(1)=1$.
(3) $\operatorname{tr}\left(x g_{n}\right)=z \operatorname{tr}(x)$ for $x \in H_{q}(n)$

Remark (Skip). Property (1) above implies that tr factors through

$$
\bigcup_{n \geq 1} H_{q}(n) \rightarrow \bigcup_{n \geq 1} H_{q}(n) /\left[H_{q}(n), H_{q}(n)\right]=\operatorname{Sym}
$$

and some people also refer to the above map as the Jones-Oceanu trace, where you recover tr by specializing p_{i} to specific values.

Theorem 3.4 (Jones). Let $\beta \in B_{n}$. Define

$$
\begin{equation*}
X_{\beta}(q, \lambda)=\left.f(q, \lambda) \operatorname{tr}([\beta])\right|_{z=-\frac{1-q}{1-\lambda q}} \tag{11}
\end{equation*}
$$

Then $P(\widehat{\beta})(a, q)=X_{\beta}\left(q^{2}, \frac{a^{2}}{q}\right)$.
Theorem 3.5 (Ocneanu). Let $x \in H_{q}(n)$

$$
\begin{equation*}
\operatorname{tr}(x)=\sum_{\lambda \vdash n} \operatorname{Tr}_{S^{\lambda}(q)}(x) \prod_{(i, j) \in \lambda} \frac{q^{i}(1-q+z)-q^{j} z}{1-q^{h_{\lambda}(i, j)}} \tag{12}
\end{equation*}
$$

where the first row of λ has coordinates $(0, j)$ and the first column has coordinates $(i, 0)$.
Proof. $H_{q}(n)=\bigoplus_{\lambda \vdash n} \operatorname{End}\left(S^{\lambda}(q)\right)$ is semisimple as q is generic. Any function $f: M_{k}(\mathbb{C}) \rightarrow \mathbb{C}$ satisfying $f(a b)=f(b a)$ is a scalar multiple of Tr. Ocneanu found these constants for us.

3.1 Calculation of $P(T(m, n))$

Definition 3.6. $T(m, n)$ is the closure of the braid $\left(\sigma_{1} \ldots \sigma_{n-1}\right)^{m}$.
Remark. $T(m, n)$ is a knot $\Longleftrightarrow(m, n)=1$ and $T(m, n)=T(n, m)$.
Let $\pi_{\lambda}: H_{q}(n) \rightarrow \operatorname{End}\left(S^{\lambda}\right)$.
Lemma 3.7. Fix $\lambda \vdash n$ and define $e_{i}:=\frac{1+\pi_{\lambda}\left(g_{i}\right)}{1+q}$. Then $e_{i}^{2}=e_{i}$. Moreover let $\operatorname{dim} S^{\lambda}(q)=d$ and $\operatorname{rank}_{S^{\lambda}(q)} e_{i}=r^{1}$. Then

$$
\pi_{\lambda}\left(\left(g_{1} \ldots g_{n-1}\right)^{n}\right)=q^{r n(n-1) / d_{\mathrm{id}_{S^{\lambda}}}}
$$

Proof. $e_{i}^{2}=e_{i}$ is simple computation in $H_{q}(n)$.
Lemma 3.8. $\mathrm{FT}_{n}:=\left(\sigma_{1} \ldots \sigma_{n-1}\right)^{n}$ is central in B_{n}.
Because S^{λ} is irreducible it follows that

$$
\pi_{\lambda}\left(\left(g_{1} \ldots g_{n-1}\right)^{n}\right)=c \cdot \operatorname{id}_{S^{\lambda}} \quad c \in \mathbb{C}
$$

By definition, $\pi_{\lambda}\left(g_{i}\right)=q e_{i}-\left(1-e_{i}\right)$. Because e_{i} is an idempotent it is diagonalizable with eigenvalues 1 and 0 and therefore in some basis of S^{λ} we have

$$
\pi_{\lambda}\left(g_{i}\right)=q e_{i}-\left(1-e_{i}\right)=\left[\begin{array}{ccccc}
q & & & & \\
& \ddots & & & \\
\\
& & q & & \\
\\
& & & -1 & \\
\\
& & & & \ddots
\end{array}\right]
$$

Thus

$$
\operatorname{det}\left(\pi_{\lambda}\left(g_{i}\right)\right)= \pm q^{r} \Longrightarrow \operatorname{det}\left(\pi_{\lambda}\left(\left(g_{1} \ldots g_{n-1}\right)^{n}\right)\right)=q^{r n(n-1)} \Longrightarrow c^{d}=q^{r n(n-1)} \Longrightarrow c=w(q) q^{r n(n-1) / d}
$$

where $w: \mathbb{C} \rightarrow \zeta_{d}$ where ζ_{d} is a d-th root of unity. w is continuous, \mathbb{C} connected, and ζ_{d} is discrete and so w is constant. Note $\left.g_{1} \ldots g_{n-1}\right|_{q=1}=(1 n(n-1) \ldots 2) .(n(n-1) \ldots 1)^{n}=\operatorname{id}$ and so $1=\left.c\right|_{q=1}=$ $w(1)$.
Lemma 3.9. The matrix $A_{\lambda}(q)=q^{-r(n-1) / d} \pi_{\lambda}\left(g_{1} \ldots g_{n-1}\right)$ is conjugate to the matrix for the action of ($n(n-1) \ldots 1$) on S^{λ}.
Proof. The previous lemma shows that $A_{\lambda}(q)^{n}-I=0$. Therefore the minimal polynomial of A_{λ} has distinct roots and so A_{λ} is diagonalizable and so the conjugacy class is just determined by the eigenvalues and multiplicities of the eigenvalues. The same continuity and connectedness argument will show that these are constant and thus $A_{\lambda}(q)$ is conjugate to $A_{\lambda}(1)=(n(n-1) \ldots 1)$.

Corollary 3.10. Suppose $(m, n)=1$.

$$
\operatorname{Tr}\left(\pi_{\lambda}\left(\left(g_{1} \ldots g_{n-1}\right)^{m}\right)\right)= \begin{cases}(-1)^{a} q^{m r(n-1) / d} & \text { if } \lambda=H_{a, b} \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

where $H_{a, b}$ is the hook shape. [Draw hook with $a+1$ vertical boxes and $b+1$ horizontal boxes].

[^0]Proof. By the previous lemma we see that

$$
\operatorname{Tr}\left(\pi_{\lambda}\left(\left(g_{1} \ldots g_{n-1}\right)^{m}\right)\right)=q^{m r(n-1) / d} \operatorname{Tr}_{S^{\lambda}}\left((n(n-1) \ldots 1)^{m}\right)=q^{m r(n-1) / d} \sum_{i} \lambda_{i}^{m}
$$

where λ_{i} are the eigenvalues of $(n(n-1) \ldots 1)$. As seen in previous lemma, all the λ_{i} are n-th roots of unity. As $(m, n)=1$ the map $\tau_{m}\left(w_{n}\right)=w_{n}^{m}$ where w_{n} a primitive $n-$ th root of unity is in $\operatorname{Gal}\left(\mathbb{Q}\left(w_{n}\right) / \mathbb{Q}\right)$ and note $\lambda_{i}^{m}=\tau_{m}\left(\lambda_{i}\right)$. As $\operatorname{char}((n(n-1) \ldots 1)) \in \mathbb{Q}[x]$ it follows that $\tau_{m}\left(\operatorname{char}_{(n(n-1) \ldots 1)}(x)\right)=$ $\operatorname{char}_{(n(n-1) \ldots 1)}(x)$ and thus

$$
\sum_{i} \lambda_{i}^{m}=\sum_{i} \tau_{m}\left(\lambda_{i}\right)=\tau_{m}\left(\sum_{i} \lambda_{i}\right)=\sum_{i} \lambda_{i}=\operatorname{Tr}_{S^{\lambda}}((n(n-1) \ldots 1))
$$

The result now follows from the Murnaghan-Nakayama rule.

Theorem 3 (Jones)

Suppose $(m, n)=1$. Then

$$
\begin{equation*}
P\left(T_{n, m}\right)(a, q)=\frac{a^{m(n-1)}\langle 1\rangle_{q}}{\langle n\rangle_{q}} \sum_{b=0}^{n-1}(-1)^{n-1-b} \frac{q^{-m(2 b-n+1)}}{\langle b\rangle_{q}!\langle n-1-b\rangle_{q}!} \prod_{\substack{j=b-n+1 \\ j \neq 0}}\left(q^{j} a-q^{-j} a^{-1}\right) \tag{14}
\end{equation*}
$$

where $\langle n\rangle=q^{n}-q^{-n}$.

Proof. Plug Eq. (13) into Eq. (12) and then plug that into Eq. (11). The only thing I haven't explicitly computed is $r=\operatorname{rank}_{S^{\lambda}(q)}\left(e_{i}\right)$ and $d=\operatorname{dim} S^{\lambda}$. First all the σ_{i} are conjugate to σ_{1} in B_{n} as a result of the braid relations. So we only need to find rank e_{1}. But $e_{1} \in H_{q}(2)$. Thus

$$
\operatorname{rank}_{S^{\lambda}(q)}\left(e_{1}\right)=\operatorname{rank}_{\operatorname{Res}_{H_{q}(2)}^{H_{q}(n)}\left(S^{\lambda}(q)\right)}\left(e_{1}\right)
$$

There are 2 irreducibles for $H_{q}(2)$ and $\pi_{\square}\left(g_{1}\right)=q$ while $\pi_{\square}\left(g_{1}\right)=-1 \quad \Longrightarrow \quad \pi_{\square \square}\left(e_{1}\right)=1$ and $\pi_{\square}\left(g_{1}\right)=0$ and so for $\lambda=H_{a, b}$

$$
r=\operatorname{rank}_{S^{H_{a, b}(q)}}\left(e_{1}\right)=\text { mult of } S^{\square}(q) \text { in } \operatorname{Res}_{H_{q}(2)}^{H_{q}(n)}\left(S^{H_{a, b}}(q)\right) \stackrel{\text { branching }}{=}\binom{a+b-1}{a}
$$

and note we also have

$$
d=\operatorname{dim} S^{H_{a, b}}(q) \xlongequal{\text { hook }}\binom{a+b}{a}
$$

4 Cherednik Algebras and Torus Knots

Proposition 4.1 (Skip). Let L be any representation of S_{n}, then

$$
\begin{equation*}
\frac{1}{1-a} \operatorname{ch}\left(L ; p_{i}=1-a^{i}\right)=\sum_{k=0}^{n-1}(-a)^{k} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{S_{n}}\left(\Lambda^{k} \mathfrak{h}, L\right) \tag{15}
\end{equation*}
$$

Proof. Applying definitions,

$$
\begin{aligned}
\sum_{k=0}^{n-1}(-a)^{k} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{S_{n}}\left(\Lambda^{k} \mathfrak{h}, L\right) & =\sum_{k=0}^{n-1}(-a)^{k}\left\langle\Lambda^{k} \mathfrak{h}, L\right\rangle=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sum_{k=0}^{n-1}(-a)^{k} \operatorname{Tr}_{L}(\sigma) \operatorname{Tr}_{\Lambda^{k} \mathfrak{h}}(\sigma) \\
& =\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{Tr}_{L}(\sigma) \sum_{k=0}^{n-1} \operatorname{Tr}_{\Lambda^{k} \mathfrak{h}}(\sigma)(-a)^{k}
\end{aligned}
$$

Writing out the first few terms, we see that

$$
\begin{aligned}
\sum_{k=0}^{n-1} \operatorname{Tr}_{\Lambda^{k} \mathfrak{h}}(\sigma)(-a)^{k} & =1+\operatorname{Tr}_{\mathfrak{h}}(\sigma)(-a)+\ldots+\operatorname{Tr}_{\Lambda^{n-1} \mathfrak{h}}(\sigma)(-a)^{n-1} \\
& =(-1)^{n-1}(\text { characteristic polynomial of } \sigma \text { but coefficients reversed }) \\
& =(-1)^{n} q^{n} \operatorname{char}_{\sigma}\left(\frac{1}{q}\right) \stackrel{\text { Eq. }(2)}{\underline{=}} \operatorname{det}(I-q \sigma) \stackrel{E q .(1)}{\underline{=}} \frac{1}{1-a} \prod_{i}\left(1-a^{i}\right)^{k_{i}(\sigma)}
\end{aligned}
$$

Now apply the definition of $\operatorname{ch}(L)$.

Theorem 4 (GORS)

The graded Frobenius character of $L_{m / n}$ (after changing variables) coincides with the HOMFLY polynomial of the (m, n)-torus knot when $(m, n)=1$.

$$
a^{(m-1)(n-1)} \frac{1}{1-a^{2}} \operatorname{gch}\left(L_{m / n}\right)\left(q^{2}, p_{i}=\left(1-a^{2}\right)^{i}\right)=P\left(T_{n, m}\right)(a, q)
$$

Proof.

$$
\begin{aligned}
\frac{1}{1-a^{2}} \operatorname{gch}\left(L_{m / n}\right)\left(q^{2}, p_{i}=\left(1-a^{2}\right)^{i}\right) & \stackrel{E q .(15)}{=} \sum_{i} \sum_{k=0}^{n-1}\left(-a^{2}\right)^{k} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{S_{n}}\left(\Lambda^{k} \mathfrak{h},\left(L_{m / n}\right)_{i}\right) q^{2 i} \\
& \stackrel{\text { check }}{=} \sum_{i} \sum_{k=0}^{n-1}\left(-a^{2}\right)^{k} \operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{S_{n}}\left(S^{a, n-1-a},\left(L_{m / n}\right)_{i}\right) q^{2 i} \\
& \stackrel{\text { Eq. (10) }}{=} \text { explicit function of } q \text { and } a
\end{aligned}
$$

One can then show using pro q-series manipulation to show that this is equal to Eq. (14).
Corollary 4.2 (rank-level duality).

$$
\left(L_{m / n}\right)^{S_{n}} \cong\left(L_{n / m}\right)^{S_{m}}
$$

Fun Facts:

(a) gr $L_{n+1 / n} \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] / \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]_{+}^{S_{n}}$
(b) $c_{n}(q, t)=\left\langle\nabla e_{n}, e_{n}\right\rangle=\mathscr{P}_{T(n, n+1)}(q, t, a=0)$

[^0]: ${ }^{1}$ Aprioi r depends on i but we will show it's independent later.

